
	   1	  

Punctuated Copy Number Evolution and Clonal Stasis 
in Triple-Negative Breast Cancer  

 

Gao et al. 2016 

 

 

CONTENTS 

Supplementary Figures 1 - 9 …………………………………………………… Pages 2-13 

Supplementary Tables 1-6 ……………………………………………………… Pages 14-19 

Supplementary Notes …………………………………………………………… Pages 20- 30 

 

  



	   2	  

 

Supplementary Figure 1 - Models of Copy Number Evolution in Tumors  
(a) Gradual model of copy number evolution.  Diploid cells acquire CNAs sequentially over 
extended periods of time, leading to more malignant stages of cancer.  This model predicts a 
large number of intermediate clones (A, B, C) that evolve during the transition from diploid to 
aneuploid genomes.  (b) Punctuated model of copy number evolution.  Diploid cells undergo a 
punctuated burst of evolution in which many chromosomal amplifications and deletions are 
acquired in a short period of time at the earliest stages of tumor progression.  Genome instability 
is then turned off, and the clones undergo stable clonal expansions of aneuploid profiles during 
tumor growth to form the tumor mass. 



	   3	  

 

 

 

 

 

 

 

 

 

Supplementary Figure 2 - Clustered Heatmaps of Diploid and Aneuploid Single Cell Copy 
Number Profiles.  One-dimensional hierarchical clustering was performed on the single cell 
copy number profiles from all diploid and aneuploid cells from each TNBC patient. Copy 
number aberrations are plotted on the X-axis in genome order, while single cells are plotted on 
the Y-axis.  Clonal subpopulations are color coded by row sidebars as follows: diploid cells (D) 
and tumor subpopulations (A, B, and C).  
ST2.1 – Clustered heatmaps of patients T1, T2 and T3 
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Supplementary Figure 2 – continued 

ST2.2 – Clustered heatmaps of patients T4, T5 and T6 
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Supplementary Figure 2 – continued 

ST2.3 – Clustered heatmaps of patients T7, T8 and T9 
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Supplementary Figure 2 – continued 

ST2.4 – Clustered heatmaps of patients T10, T11 and T12 
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Supplementary Figure 3 – Optimized Cluster Selection using PAMK Medoids 
Partitioning around medoids clustering of single cell aneuploid profiles for each of the 12 TNBC 
patient.  The optimal number of clusters was selected by the highest peak using the Calinski-
Harabasz index or optimum average silhouette width (T11).  The K-range of 1 to 20 clusters was 
tested for each TNBC patient (X-axis). 
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Supplementary Figure 4 - Divergent Subpopulations in Polygenomic Tumors T5 and T8 
One-dimensional clustered heatmaps of aneuploid single cell copy number profiles from 
polygenomic tumors T5 (a) and T8 (b). The major subpopulations (A, B) are color coded by row 
sidebars. Copy number profiles of single cell are arranged in genome order. Cancer genes in 
CNA regions that distinguish the subpopulations are annotated.  
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Supplementary Figure 5 - Step and Slope Fitting of Sorted Single Cell CNA Count Data 
The number of segments in each single cell was counted for each tumor and the data was sorted 
by CNA number.  Step functions or linear regression were fitted to the data.  To determine better 
fit, three metrics were calculated: Bayesian information criteria (BIC), the Akaike information 
criteria (AIC) values, and adjusted R-squares values. 
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Supplementary Figure 6 – Universal and Gated Single Cell CNA Profiles 
Clustered heatmaps of single tumor cells flow-sorted from aneuploid fractions (orange) and 
ungated fractions (green) for four TNBC patients: T4, T6, T7 and T10.  Diploid cells from 
ungated fractions or gated populations were removed from this analysis.  Copy number profiles 
are arranged in genome order on the X-axis, while single cells are plotted along the Y-axis. 
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Supplementary Figure 7 – Trees Constructed from Gradual and Punctuated Evolution 
Modeling Data. (a) Trees constructed by randomly sampling 100 single cells from punctuated 
burst modeling results (100 million cells) with different fitness and burst mutation rates. (b) 
Trees of 100 single cells sampled from gradual modeling results (100 million cells) with 
different simulation conditions for epistatic interactions, burst timing and combinations thereof.  
See supplementary notes for more details. 
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Supplementary Figure 8 - Focal Amplifications in TNBCs.  
Consensus copy number profiles representing the population of tumor cells were calculated for 
each tumor using the single cell aneuploidy profiles. High copy number focal amplifications with 
cancer genes are annotated.  
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Supplementary Figure 9 – Single Cell Sampling Sizes and Detection Power  
Posterior saturation curves of single cell sample sizes constructed for each polygenomic TNBC 
tumor using the experimentally measured subpopulation frequencies.  The posterior probability 
of observing at least 3 single cells in each subpopulation given number of cells sequenced was 
calculated based on a binomial distribution for the 8 biclonal tumors and multinomial 
distribution for two triclonal tumors (T4 and T11). Saturation was expected to occur by 
sequencing 20-40 cells in all tumors.  Monoclonal tumors (T1 and T12) were excluded from the 
analysis. 
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Supplementary Table 1 - Clinical Information for 12 TNBC Tumors  

Tumor ID Tumor 
Size Tumor  Grade Adjuvant 

Chemotherapy 
Age at 

Diagnosis 
Lymph 
Nodes Recurrence Metastasis - 

Local/Regional 
Metastasis 
- Distant 

Sub 
Populations 

Diversity 
Index 

T1 1.9 cm    Invasive 
ductal III paclitaxel, FAC 35 Yes Yes  Axillary Lymph 

Nodes Brain 1 0 

T2 6.0 cm Invasive 
ductal III 

Taxotere, 
gemcitabine, 

zometa 
66 Yes Yes 

Internal 
Mammary  & 

Axillary Lymph 
Nodes 

Bone 2 0.381 

T3 1.6 cm Invasive 
ductal III paclitaxel, AC 69 No No No No 2 0.5 

T4 2.7 cm Invasive 
ductal III paclitaxel, FAC 65 No No No No 3 0.922 

T5 1.6 cm Invasive 
ductal III paclitaxel, FAC 54 Yes Yes Supraclavicular 

Lymph Node Brain 2 0.485 

T6 1.8 cm Invasive 
ductal III 

docetaxel, 
cyclophosphamid

e 
69 No No No No 2 0.423 

T7 2.5 cm Invasive 
ductal III paclitaxel, AC 79 No No No No 2 0.567 

T8 1.3 cm Invasive 
ductal III not known 53 No No No No 2 0.618 

T9 6 cm Invasive 
ductal III paclitaxel, FEC 57 Yes No Axillary Lymph 

Nodes No 2 0.463 

T10 1.4 cm Invasive 
ductal III paclitaxel, FEC 37 No No No No 2 0.581 

T11 3.2 cm Invasive 
ductal III paclitaxel, AC 63 Yes No na no 3 0.952 

T12 2.4cm Invasive 
ductal III paclitaxel, AC 46 No No na no 1 0 

This table lists the clinical information for the 12 invasive ductal carcinoma samples that were 
analyzed in this study.  All samples are high grade (III) and were surgically resected prior to 
administration of adjuvant chemotherapy.  Chemotherapy abbreviations are: AC (doxorubicin 
and cyclophosphamide), FAC (5FU, doxorubicin and cyclophosphamide) and FEC (epirubicin 
and cyclophosphamide).  Columns listed in the table include: tumor ID; tumor size; classification; 
grade; adjuvant chemotherapy; age at diagnosis; lymph node metastases; recurrence; local or 
regional metastasis; distant metastasis; Shannon diversity index; number of major clonal 
subpopulations. 
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Supplementary Table 2 - Sequencing Metrics for Single Cell Data 

Tumor Number of cells sequenced  Average reads per bin Average reads per cell Average DNA ploidy 

T1 100 206 2,517,807 2.0N, 3.1N 

T2 65 260 3,172,745 2.0N, 2.2N 

T3 120 184 2,250,271 2.0N, 2.4N 

T4 54 326 3,982,240 2.0N, 1.8N, 3.6N 

T5 90 171 2,090,624 2.0N, 2.7N 

T6 92 215 2,623,868 2.0,N 2.9N 

T7 68 114 1,395,184 2.0N, 3.1N 

T8 84 123 1,503,512 2.0N, 2.7N 

T9 85 179 2,190,243 2.0N, 3.3N 

T10 94 146 1,787,844 2.0N, 3.3N 

T11 100 537 6,549,081 2.0N, 1.7N, 2.9N, 3.1N 

T12 48 887 10,828,886 2.0N, 4.1N 

This table lists the next-generation sequencing metrics for the single cell copy number data for 
each TNBC patient.  Columns include: tumor ID; number of cells sequenced; average number of 
reads per 220kb bin; average number of sequencing reads for each single cell; mean DNA ploidy 
distributions detected in the tumor. 
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Supplementary Table 3 – Clonal Frequencies of Tumor Subpopulations 

Tumor Total Cells 
Sequenced 

Clonal 
Aneuploid cells 

Number of Subclonal Tumor cells Clonal Frequency 

cloneA cloneB cloneC cloneA cloneB cloneC 

T1 100 72 72 NA NA 1.00 NA NA 

T2 65 47 41 6 NA 0.87 0.13 NA 

T3 120 47 40 7 NA 0.85 0.15 NA 

T4 54 38 23 10 5 0.61 0.26 0.13 

T5 90 36 30 6 NA 0.83 0.17 NA 

T6 92 73 62 11 NA 0.85 0.15 NA 

T7 68 50 37 13 NA 0.74 0.26 NA 

T8 84 42 29 13 NA 0.69 0.31 NA 

T9 85 63 52 11 NA 0.83 0.17 NA 

T10 94 56 41 15 NA 0.73 0.27 NA 

T11 100 48 23 20 5 0.48 0.42 0.10 

T12 48 16 16 NA NA 1.00 NA NA 

This table lists the total number of tumor cells sequenced and number of tumor cells that were 
clustered into designated clonal subpopulation.  Clonal frequencies were calculated from the 
genotype frequencies of the subpopulations in each TNBC patient (online methods). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   17	  

Supplementary Table 4 – Non-clonal Cell Frequencies in TNBC Tumors 

Tumor 
Total 
Cells 

Sequenced 

Clonal 
Aneuploid 

Cells 

Diploid 
Cells 

Metastable 
Aneuploid 

Cells 

Metastable 
Cells (%) 

Pseudodiploid 
Cells 

Pseudodiploid 
(%) 

Chromazemic 
Cells 

Chromazemic 
cells (%) 

T1 100 72 19 6 8.33 3 15.79 0 0.00 

T2 65 47 13 3 6.38 1 7.69 1 1.54 

T3 120 47 61 6 12.77 5 8.20 1 0.83 

T4 54 38 11 3 7.89 1 9.09 1 1.85 

T5 90 36 47 3 8.33 3 6.38 1 1.11 

T6 92 73 11 6 8.22 2 18.18 0 0.00 

T7 68 50 11 4 8.00 2 18.18 1 1.47 

T8 84 42 38 1 2.38 1 2.63 1 1.19 

T9 85 63 16 5 7.94 1 6.25 0 0.00 

T10 94 56 34 2 3.57 1 2.94 1 1.06 

T11 100 48 46 5 10.42 1 2.17 0 0.00 

T12 48 16 28 2 12.50 2 7.14 0 0.00 

This table lists the total number of clonal aneuploid, diploid and non-clonal cells detected in each 
tumor.  Nonclonal cells are classified as metastable aneuploid cells, pseudodiploid cells and 
chromazemic cells based on their copy number profiles.  The percentages of nonclonal cells in 
each tumor are also listed. 
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Supplementary Table 5 – Distribution of CNAs in Pseudodiploid Cells 

PD 
cells 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22   Loss 

Count 
Loss 
Freq 

Loss 
Odds 

chr1                                               0 0.00 0.00 

chr2                                       -1       1 0.05 0.05 

chr3           -1                                   1 0.05 0.05 

chr4                                               0 0.00 0.00 

chr5   1 -1                   -1                     2 0.09 0.10 

chr6                 -1 -1                           2 0.09 0.10 

chr7                                               0 0.00 0.00 

chr8                               -1         1 -1   2 0.09 0.10 

chr9                                         1     0 0.00 0.00 

chr10 1                                   -1         1 0.05 0.05 

chr11                                               0 0.00 0.00 

chr12                                   1           0 0.00 0.00 

chr13           -1         -1                         2 0.09 0.10 

chr14   -1                                 -1         2 0.09 0.10 

chr15         -1                                     1 0.05 0.05 

chr16             -1                                 1 0.05 0.05 

chr17           1                                   0 0.00 0.00 

chr18                                               0 0.00 0.00 

chr19                                 -1             1 0.05 0.05 

chr20                                               0 0.00 0.00 

chr21                                               0 0.00 0.00 

chr22                                               0 0.00 0.00 

chrX       -1       -1       -1   -1 -1                 5 0.23 0.29 

This table shows the genomic distribution of copy number amplifications (red) and deletions 
(blue) detected in the pseudodiploid (PD) cells identified in all TNBC patients.  This plot shows 
a statically significant enrichment of X chromosome loss. 
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Supplementary Table 6 –Pseudodiploid Cells in Matched Normal Breast Tissues 

Matched Normal 
Tissue 

Total Cells 
Sequenced Diploid Cells Pseudodiploid 

Cells Diploid(%) Pseudodiploid(%) 

T3N 32 30 2 93.8 6.3 

T5N 38 36 1 94.7 5.3 

T8N 25 26 1 96.3 3.7 

T10N 24 22 2 91.7 8.3 

This table lists the percentages and cell counts of pseudo-diploid cells in matched normal breast 
tissues from 4 patients. 
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Supplementary Notes on Gradual and Punctuated Tumor Modeling 
 
To investigate alternative hypotheses for the generation of the patient tumor phylogenies, we 
designed a multi-type birth-death-mutation stochastic process model. The model is initiated with 
a single ancestor cancer cell, which divides and dies at rates b0 and d0 per day, respectively. 
Upon a cell division event, one of the daughter cells may accumulate a new copy number 
alteration (CNA) with probability u0 and thus initiates a new subclone. This subclone has new 
birth rate: 
 

  𝑏! = 𝑏! + 𝑠 
 
Where s is chosen from a mutational fitness distribution. Newly emerging CNAs are considered 
unique and not previously observed in the population, and are irreversible. This branching 
process model forms the basis of all scenarios investigated. Individual scenarios differ by 
utilizing alternative assumptions regarding parameters such as epistatic fitness effects or 
mutation rates (see below). The stochastic process continues until the population reaches size N, 
which is chosen based on the patient tumor volume at the time of sampling. We implemented 
this model as an exact stochastic computer simulation. Within each simulation, we designated 
cells as being either "diploid" or "aneuploid" based on a cutoff of 5 CNAs per tumor cell 
genome. This cutoff was chosen because we considered the difference between diploid and 
aneuploid cells to be greater than 5 CNAs. Once a simulation run reaches N cells, we obtained a 
random sample of 50 cells from the aneuploid population; this number was chosen since on 
average, we sequenced 50 single aneuploidy tumor cells per patient. For each sample, we 
constructed the Hamming distance matrix of the 50 aneuploid cells with 50 ancestor diploid cells 
and use their labels to run AMOVA24, an algorithm designed to test whether the genetic diversity 
between two groups (in our case, aneuploid and ancestral cells) is significantly different. Since 
AMOVA is based on the ratio of squared distances between groups to that within groups, 
aneuploid cells are required to have a common ancestor in order to observe a large F-statistic. 
We performed permutation tests to determine the significance of the F-statistic by rerunning 
AMOVA with labels (aneuploid and dipoid) randomly assigned multiple times; this approach 
allowed us to create a distribution for the test statistic that we could then compare our F-statistic 
to determine how likely it is that we would observe our sample if the underlying tree did not 
have a distinct subclone. 
 
We simulated 50 independent runs of the model for each parameter combination, and sampled 
with replacement 100 cells from each resulting branching process. In order to determine 
parameters that were able to recapitulate the phylogenies observed from patients, we created 
rules for each sample based on a p-value and the number of subclones present, and for each 
simulation based on the number of samples, adhering to the following criteria: 
 

(i) Samples must have a p-value below 0.1 and a single branch leading to the aneuploid 
tumor cells (determined by sharing a minimum distance of 5 CNAs from the root) 

(ii) 90% of samples taken from a single simulation must satisfy (i) 
(iii)Parameters must have at least 90% of simulations that satisfy (ii). 
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We tested all scenarios at different parameter combinations for a total of 2,022 different models 
until the population hit 2×10! cells in order to determine likely scenarios or parameters at a 
reduced scale. Thereafter, we performed additional simulation runs across a range of parameters 
similar to the previous sets used until the number of cells reached ≈   2.86  ×10! cells, which is 
equivalent to the total number of aneuploid tumor cells obtained from our patient data set (flow-
sorting cell counts of the aneuploid fractions). Within these simulations, we refined our first 
criterion for selecting samples to account for observing a branch between diploid and aneuploid 
cells with a larger distance: 
 

(i) Samples must have a p-value below 0.1 and a single branch for tumor cells (determined 
by sharing a minimum distance of 5 SCNAs from the root) and must contain a branch of 
at least length 5. 

 
 
Alternative Assumptions Utilized in Our Evolutionary Branching Process Models 
The following sections describe the underlying rules behind each of the alternative scenarios we 
considered along with the parameters determining each. The set of models we considered is 
obviously not exhaustive, and other possibilities may exist, but we attempted to include models 
that seemed biologically reasonable while allowing the branching process to grow as naturally as 
possible (i.e. minimizing the number of rules created to avoid overfitting). 
 
All scenarios are based on a birth-death-mutation process initiating with a single ancestor cell. 
The growth of its clone is determined by the ancestor birth and death rates, which are held 
constant across individual scenarios for comparability. New mutations in the process occur with 
some probability and new mutations have a birth rate generated from the sum of the parent 
fitness and a random variable with a distribution discussed in the following sections. Thus, for a 
cell of type   𝑖 having birth rate  𝑏!, death rate   𝑑!, and mutation probability   𝑢!, the elementary 
transition probabilities of the stochastic process are given by: 
 

𝑏𝑖𝑟𝑡ℎ:  𝑃 𝑋! 𝑡 + ℎ = 𝑋! 𝑡 + 1 𝑋! 𝑡 = 𝑏! 1− 𝑢! ℎ + 𝑜 ℎ  
𝑑𝑒𝑎𝑡ℎ:  𝑃 𝑋! 𝑡 + ℎ = 𝑋! 𝑡 − 1 𝑋! 𝑡 = 𝑑!ℎ + 𝑜 ℎ  
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛:  𝑃 𝑋!!! 𝑡 + ℎ = 1 𝑋! 𝑡 = 𝑏!𝑢!ℎ + 𝑜(ℎ) 

 
Thus, for a cell of type   𝑖 having birth rate  𝑏!, death rate   𝑑!, and mutation probability   𝑢!, The 
time a cell dies or divides is exponentially distributed with rate (𝑏! + 𝑑!). At this time, the cell 
divides with probability !!(!!!!)

!!!!!
, dies with probability  !!

!!!!!
, or mutates into a new cell type with 

probability !!!!
!!!!!

. After a mutation, a type 𝑖 + 1 cell appears. We determine the parameters for a 
type 𝑖 + 1  cell according to the following models. 
 
1. The gradual model  
To investigate gradual CNA accumulation using our model, we first considered an exponentially 
decreasing fitness distribution with a constant mutation probability over time. During each 
mutation event, a single CNA arises. If a parent has birth rate b0 and gives rise to a mutant 
daughter, then the latter has birth rate   𝑏! = 𝑏! + 𝑠 where s is a random variable with 
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exponentially decreasing tails. The probability density function (p.d.f.) of s (Fig. S1) is: 
 

𝑓 𝑥 =   
1
2𝛼𝑒

!!"𝐼 𝑥 ≥ 0 +
1
2𝛼𝑒

!"𝐼 𝑥 < 0   
 

                                    
S1.  The fitness distribution for a cell with a new CNA is chosen from a double exponential 
distribution in addition to the birthrate of the cells parent. The rate of the distribution will lead to 
differences in how fast populations grow and accumulate further mutations. 
 
The maximum birth rate of any clone is capped at 1. We also used a fitness distribution of an 
atom at a single value so that the fitness increased by a fixed amount to determine if the shape of 
the fitness distribution has an effect on the population and trees created, and whether punctuated 
evolution could occur with fixed increases in fitness for subclones. The free parameters in this 
scenario include 𝛼 - the rate parameter for the fitness distribution, and 𝑢! - the mutation rate. 
   
We also implemented a gradual model without using a fitness distribution to determine the 
fitness of mutant cells. Instead, we assumed a deterministic increase in fitness by specific 
amounts. If a parent has birth rate b0 and gives rise to a mutant daughter, then the latter has birth 
rate   𝑏! = 𝑏! + 𝑠 where s is a constant value. We tested this model at fewer values of 𝑠 that 
cover a large interval in fitness. As new mutations arise, the increase in fitness should lead to 
subclones outcompeting parental clones by a fixed rate instead of choosing that rate from a 
distribution, guaranteeing waves of clonal expansions. The free parameter in this model is 𝑠 
instead of 𝛼. 
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S2. A model that uses a deterministic increase in fitness for gradual clonal evolution rarely 
shows passing scenarios based on different values for the amount of increase in fitness and the 
baseline mutation probability. 
   
Figure S2 displays a heatmap with the proportion of simulations that passed at various values for 
the increase in fitness and the background mutation rate. The results of this heatmap show it is 
unlikely that a fixed increase in fitness would lead to trees that appear to have punctuated 
equilibrium, and are similar to results from the gradual model with random fitness increases 
described above. 
 
We included a model considering the cancer stem cell hypothesis, that a small subset of cancer 
stem cells exist that undergo mutations and their continuous proliferation and diversification 
explain the punctuated effect. Under this hypothesis, we assume 10-3 CSCs per cell that may be 
an overestimation, and we reduce our population size to this. We assume the tumor bulk CN 
profiles are reflective of the profiles of CSCs since only CSCs have unlimited replicative 
potential, and variability accumulated in these cells can be propagated indefinitely and is 
reflected in the differentiated population. Figure S3 gives the results of this model also fail to 
reconstruct phylogenetic trees that contain a punctuated effect and pass our AMOVA tests. 
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S3. A heat map showing the results of testing the cancer stem cell hypothesis shows the model 
has poor performance with respect to AMOVA testing for punctuated trees. The model is the 
same as the gradual model with an end population at diagnosis of 10-3 times the population of all 
tumor cells at diagnosis. 
                                         
2. The gradual model including varying mutation rates 
We next sought to investigate the effects of non-constant mutation rates. In order to consider 
variability between clones in the magnitude of their mutation rates, we implemented a variation 
of the base model, assuming a baseline fitness and mutation rate for the ancestor as before. 
Similarly, when a new mutation arises, the addition in birth rate is sampled from the same 
exponentially tailed p.d.f. as before. However, in contrast to the base model, we also included a 
distribution for the  mutation rate such that a mutant daughter has mutation rate 𝑢! + 𝑣, where 𝑣 
is exponentially decreasing. Values exceeding a mutation rate of 1 are reassigned 1 (i.e. any new 
cells have mutations as well). Since we assume a single CNA per mutant, this scenario could 
allow for a quick succession of clonal sweeps where subclones have higher mutation rates and 
fitness values than their parents and are able to initiate more fit subclones sufficiently quickly 
before the previous clone becomes too large. The free parameters in this model include 𝛼 - the 
rate parameter for the fitness distribution, 𝑢! - the background mutation rate, and 𝛼! - the rate 
parameter for the mutation distribution. 
 
3. The time-dependent mutation burst model 
We then aimed to study a scenario in which the mutation rate might significantly increase for a 
short time during the evolution of a tumor. This increase might be caused by environmental or 
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intrinsic factors and may contribute to the appearance of many CNAs during a short time in the 
evolutionary history of a tumor. The model assumes the same fitness distribution as model #1, 
and the mutation rate is either constant over time (as in model #1) or stems from a distribution  
(as in model #2). Additionally, in this scenario we consider a short-term increase (or “burst”) in 
the mutation rate to occur early during the tumorigenetic process, where the probability of a 
mutation drastically increases in early clones before stabilizing according to a step function (Fig. 
S4). In this model, an early subclone can arise that has a larger mutation rate, thus generating 
further variability in its offspring at a rapid time scale. The free parameters in this model are  𝛼 - 
the rate parameter for the fitness distribution, 𝑢!- the background mutation rate, 𝛼! - the rate 
parameter for the mutation distribution, 𝜏 - the length of time of a burst, and 𝛼! - the rate 
parameter for the burst mutation distribution. 

                           
S4. Under the burst model, the probability of a CNA occurring during a time period is inflated 
such that early mutations have a larger chance of creating subclones with increased fitness and 
further mutations. After a period of time, the mutation rate stabilizes among cells back to the 
baseline mutation rate. The curve (black) shows the change in mutation rate compared to the 
model where mutation rate is constant (red). 
 
4. The epistasis model 
Next, we also considered a scenario in which the emergence of a CNA only provides a 
significant increase in the reproductive fitness of the cell on a specific genetic background, i.e. if 
sufficiently many CNAs have already been accumulated. The model assumes that CNAs affect 
fitness individually, but epistasis can occur which is considered to be an interaction of two or 
more CNAs that increases the additional fitness provided by each CNA by a given factor. That 
is, if a cell with k CNAs gives rise to a new mutant cell, there is a probability (1  −   𝑝!"#)! that 
the new CNA does not interact with any previous CNAs. Thus epistasis occurs with probability 
1− (1  −   𝑝!"#)!, and as a result the fitness distribution is altered by an increase in the rate 
parameter. This increases the probability of observing multiple CNAs in more fit clones, 
potentially leading to waves of clonal expansions. A sample trajectory of how fitness can 
increase over time in a clone along with the probability of epistatic interactions is shown in Fig. 
S5. The free parameters in this model are  𝛼- the rate parameter for the fitness distribution, 𝑢! - 
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the background mutation rate, 𝛼! - the rate parameter for the mutation distribution,  𝑝!"# - the 
probability of epistatic interaction between any two CNAs, and  𝛼!"# - the rate parameter for the 
epistatic fitness distribution. 

                                        
S5. As mutations accumulate, the probability of an epistatic interaction occurring (red curve) and 
leading to large changes in fitness (black curve) increases as well. Mutations (denotes by x’s) in 
a single lineage’s history are given as well as the affect on fitness (black) and the jumps in fitness 
from an epistatic event denoted by the gaps. 
 
5. The Poisson burst model  
Finally, we investigated a scenario in which multiple CNAs can be accumulated during a single 
cell division event. This model considers the same exponentially decreasing fitness distribution 
as model #1, but upon a mutation event occurring, the number of CNAs is chosen from a zero-
truncated Poisson distribution with an inflated probability of observing a single CNA. We 
truncate at zero since the Poisson number of mutations is conditioned on a mutation event 
occurring. If an event occurs, then the event is either a single CNA with some probability 
(1− 𝑝!"#$%) or a Poisson distributed number of CNAs with the complementary probability 
(𝑝!"!"#). This scenario is based on the consideration of a standard baseline mutation rate where a 
single CNA occurs during any mutation event. At another, smaller rate, the event is more 
catastrophic, and multiple CNAs may arise during a single cell division. This model suggests that 
bursts of CNAs occur very rapidly, rather than by accumulating in successive sweeps. It also 
limits the probability of a second CNA arising out of the initial ancestor population before the 
tumor reaches detection size. We thus constrained the number of bursts to 1 since it seems likely 
that a second burst would be deleterious and would not appear in the tumor at the time of 
detection. Fig. S6 displays a heat map of the proportion of trees passing our criteria for the 
punctuated model while stratifying by different values for the rate of the fitness distribution for 
the initial clone and the increase in rate of the fitness distribution for the clone with Poisson 
mutations. These analyses uncover a tradeoff between the baseline mutation rate and the 
probability of a burst: a balance preventing an early clone from creating too many single CNAs 
while still providing a sufficiently large probability of a burst. The free parameters in this 
scenario include 𝛼 - the rate parameter for the fitness distribution, 𝑢! - the mutation rate, and 
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𝑝!"#$%, the probability of a multiple mutation event occurring conditioned on a mutation event 
occurring. The parameter for lambda was fixed at 25, which is near the median difference in 
CNAs separating the diploid and the first aneuploid cell. 
 

                  
 
S6. Heat maps show much larger range of parameter values that pass our criteria for the 
punctuated model. The plots are faceted by the rate of the fitness distribution along the columns 
the increase in the rate of fitness distribution after a multiple copy number alteration change 
along the rows. Within each plot we compare across different values of the baseline mutation 
rate and the rate of a multiple copy number alteration event. 
 
We also created a similar model including an extra step to account for the deleterious effect 
bursts of CNAs might have on the fitness of clones. In this scenario, there is an increase in the 
probability that a cell dies quickly, implemented as a fitness distribution of the death rate when a 
cell has a Poisson burst of CNAs. The model is the same as the Poisson burst model just 
described, apart from the fact that, when a burst occurs, the death rate jumps drastically with 
probability 1-q so that death is very likely. With probability q the death rate remains the same 
and we sample from our modified fitness distribution to describe the fitness advantage gained as 
above. In this model, the free parameters include: 𝑢! - the mutation rate, 𝑝!"#$% - the probability 
of a multiple mutation event occurring conditioned on a mutation event occurring, and 𝑞 - the 
probability that a burst leads to a clone with a normal death rate instead of a high death rate that 
would occur with probability 1− 𝑞. The parameter for 𝜆 was fixed at 25, which is near the 
median difference in CNAs separating the diploid and the first aneuploid cell. We also set 𝛼 in 
this scenario to 1000. Fig. S7 shows the results of testing simulations of the second burst model 
over a range of parameters. The number of simulations passed is still large, but there are a wider 
range of parameter values that do not reconstruct trees, which is most likely due to the lack of an 
advantageous burst occurring in the given time. 
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Figure S7 displays results from this new model of Poisson bursting with a high probability of 
death due to a burst. The model appears similar, and many simulations pass at a more specific 
combination of parameters. The results still show a great improvement over any gradual model 
of clonal evolution. 
 

 
S7. A model with bursts of mutations results in a similarly large proportion of punctuated trees 
compared to the gradual model. The axes represent the baseline mutation probability and 
probability of a burst occurring conditional on a mutation event arising. The plot is faceted by 
the probability that the burst leads to a subclone with a fitness advantage as opposed to an 
increased death rate. 
 
Combination Models 
To further investigate alternative scenarios, we also combined strategies from models 1 – 5 to 
determine if two different scenarios could occur simultaneously. The results from our 
comprehensive parameter and model search are summarized in Fig. S8, which displays a heat 
map from all combinations of the above strategies at low/medium/high values of the burst time 
and with and without epistasis. We found that models using most combinations of these 
assumptions performed poorly compared to model #5. Among all single CNA only cases, no 
scenario had more than 9 of the 50 simulations pass our criteria. Only model #5 had a large 
proportion of scenarios pass our criteria, where we allowed multiple CNAs to occur in single cell 
divisions. 
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S8. Heat maps show results from all scenarios in the gradual models when faceted by different 
burst times and with and without an epistatic probability term. In all scenarios, no set of 
parameters performed well. Rows denote different fitness distribution rates and columns are 
different baseline mutation probabilities. The color represents proportion of nonextinct trees that 
pass our criteria. 
 
Caveats and Discussion 
We realize that models we created are not exhaustive, and represent only a subset of possible 
scenarios. We selected these models based on minimizing overfitting or creating an approach 
with too many rules. We acknowledge that the birth-death process does not consider competition 
for space or resources, as cells grow independently of each other. We also do not account for 
space in the model, and spatial models would be more realistic for solid tumors such as TNBC. 
Also, our ancestor is a diploid tumor cell, which we chose to initiate the process instead of 
starting with a population of normal breast cells. A process involving normal cells would require 
more stringent assumptions on the maximum size which changes drastically early in a person's 
lifetime, during puberty, and during childbirth, and therefore we believe that such a model has 
too many variables to estimate, many of which have not yet been determined. We instead chose 
to err on the side of parsimony and conditioned our process on the initialization of a tumor. 
Another issue for discussion is the assumption of infinite sites, or that each mutation event 
initiates a completely new CNA/set of CNAs. This assumption allows us to assume that CNAs 
are unique and prevents convergent evolution. Considering the large number of divisions that 
occur, the probability of a CNA needs to be small enough so that we do not observe more CNA 
events than sites for CNAs. Taken together, despite the caveats that apply to our model design 
and selection, our results overwhelmingly support the punctuated evolution hypothesis. We 
implemented a second Poisson model to investigate its robustness and consistency in recreating 
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punctuated trees. The second Poisson model with death parameters changing based on a burst 
more accurately describes the deleterious impact of genomic instability until a burst with a 
beneficial set of CNAs arises. The end result is still a model which predicts punctuation for 
certain sets of parameters, but those parameters are now shifted, and the expected time until the 
tumor reaches its diagnosis size is on average longer, reflecting the more commonly occurring 
cell death. 
 
 
 
 
 

 


